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Extinction of a bacterial colony under forced convection in pie geometry
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The extinction of a bacterial colony, as it is forced to migrate into a hostile environment, is analyzed in pie
geometry. Under convection, separation of the radial and the azimuthal degrees of freedom is not possible, so
the linearized evolution operator is diagonalized numerically. Some characteristic scales are compared with the
results of recent experiments, and the “integrable” limit of the theory in the narrow growth region is studied.
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The time evolution of bacterial colonies on a petri-dishwherea(x) is the local growth rate. When the hostile envi-
has been studied recently both theoretically and experimenonment outside an “oasis” of size, causes the immediate
tally [1-4]. The colony is a relatively simple biological sys- death of any bacteria, and inside the oasis there is some
tem, and its basic component, an individual bacterium, inpositive growth ratea(x) takes the form
volves only “elementary” biological processes such as
diffusion, food consumption, multiplication, death, and some a 0=Xx<Xq
interaction like chemotaxis. Studies of several bacteria a(x)=
strains have shown a wide variety of complex pattern forma-
tion, in most cases due to either competition for food re-

sources or chemical interaction. With a uniform, inexhaust-  thi blem i ivalent to thé . time |
ible background of nutrients and without the presence of! this problem IS equivaient to themaginary ime evolu-

mutations and chemical signaling, these simple strains ark?" Of @ quantum particle in an infinite potential well. The
suppose to invade an empty region as a front which propadfoWth pattern is determined by the eigenvalues of the evo-
gates with some typical velocity, known as the Fisher frontution operator, giving a colony localized on the oasis if it
[5-7]. has a minimal widthxy,>7ry/D/a. (This width scales like the

Biological problems of colony growth imhomogeneous Wwidth of the Fisher front The introduction of the drift term
environment and under forced convection have been mod+dy into Eq. (1) may be compensated by a “gauge” of the
eled recently by Nelson and Shnef®] and by Dahmen, evolution(Liouville) operator eigenfunctions
Nelson, and Shnerf®]. These studies have focused on the
spectral properties of the linearized evolution operator, $n=sin(nmx/Xo) —e="*2 sin(nmx/Xo) (©)]
which becomes non-Hermitian in the presence of convection
[10]. An experiment designed to test these predictions hatogether with a rigid shift of the eigenvalues,
been carried out recently by Neiet al. [4].

In the experiment, a colony dacillus subtilisbacteria is
forced to migrate in order to “catch up” with a shielded
region on the petri-dish, where all the other parts of the dish
are exposed to an ultraviol€tiv) light, which makes the The theory, thus, predicts an extinction transition when all
unshielded bacteria immotile. It was assumed that the adaphe eigenvalues of Eq(4) become negative, i.e., as.
tation of the bacterial colony to the rotating shielded region=2./aD - O(1/x,), which is the Fisher velocity11]. Right
has nothing to do with information processing or mutual sig-above the extinction transition, only the largest growth ei-
naling in the colony, but is attributed solely to the Combinedgenva|ue(the “ground state’} is positive, and the nonlinear
effect of “dumb” diffusion of individual bacteria and the term —bc? is Suppressed_ According|y7 the ana|ysis of the
larger growth rate under the shelter. Theoretically, it wasransition is focused on the features of the ground state of the
predicted that the adaptation of the colony to the movinginearized operator.
environment fails if the drift is faster than the Fisher front  The experimeni4] takes place in a two-dimensional ge-
velocity, as the colony lags behind the shelter and an extincometry. Part of a petri-dish was shielded from the uv source,
tion transition takes place. and then this shield was given a constangular velocity

In order to get the flavor of the theory, let us consider awith respect to the petri-dish. The corresponding convection
one-dimensional example, where bacteria are diffusing on @elocity v(r)=wr was chosen to interpolate between zero
line parametrized by, and are subject to some environmen- (at the rotation axisand about 2, at the edge of the dish. It
tal heterogeneity that implies fluctuating growth rate. If thetyrned out that the colony indeed fails to keep rotating with
bacteria diffuses, multiply, and are forced to migrate withthe shield at about half the radius. On the other hand, the
some convection velocity, the differential equation which yelocity profile for the bacterial density(r, ) did not reach

@

—o elsewhere.

In the absence of a drift, i.ev,=0, the linearized version

2

T (0)=TH(v=0 —:—D. 4)

describes the evolution of the Colony is equ”ibrium during the experimemt—v3 days
5 In this paper, | consider the differences between the one-
f: ‘9_C ‘9_C _he2 dimensional systen(l,2) and the actual experimental setup.
D +v—+a(x)c—bc?, (1) > , : ,
dat 2 oX In particular, the two-dimensional nature of the experiment
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() a(6)= —o elsewhere, ®
i.e., we have absorbing boundary conditi¢®8]
c(r,6q,t)=c(r,0t)=0. 9

As for the petri-dish edge at=R, it is reasonable to take the
von Neumann boundary and to impose the no-slip condition
on the bacterial density at the surface. However, the data of
[4] seems to indicate extinction of the bacteria at the edge of
the dish. This is perhaps due to the fact that the width of the
boundary layefwhich is expected due to the no-slip condi-

FIG. 1. Pie geometry: the growth rate in the shaded regian is 1i0n) is approximately the Fisher width, which has been
and any bacteria outside this area “di€dr become immotilgin-  Shown above to be very small. Accordingly, we further sim-
stantly due to the UV light. The shaded region is then rotated aPlify the problem by using

angular velocityw. c(R,6,t)=0. (10

and the effect ofadial diffusion are considered explicitly. Dropping the term—bc? at Eq. (5), one has the linearized

The typlcarll time scalesdfor' t:heh stablhzgtlon of the groundevolution operator, and for the no-drifb& 0) case, the den-
state are then compared with the experiment. sity of bacteria at time is given by

In order to capture the essential physics using the simplest
geometry, the extinction transition is considered on a pie, a
section of the two-dimensional digsee Fig. 1 Although c(r,0,0)=2, Ay e@ Tmaltg (1, 6), (11
the shielded region of the experimg¢d{ was not pie shaped, o
it turns out that even in this simple geometry there is a couyith the eigenstates of the evolution operator,
pling between the radial and the azimuthal degrees of free-
dom, and the spectrum becomes “chaotic” when convection
takes place. Accordingly, the results presented here are also ~ @mn(r',0)= 7m ndnmyo,(1/VDIT p)sin

relevant to the more complicated geometry of the experi-

n7ﬂ9)
ik (12

ment. _ . . . 7mn» the normalization factors,
The basic equation which governs the bacterial growth
problem on a nonuniform substrate, in the absence of muta- 2 1
tion and chemical interactions, [i§] Mnm= , (13
Rv/6, Ji(nmteg)+11(RIND/T' )
ac(x,t . _ .
E?t ) =DVZ2c(x,t)+a(x)c(x,t)+v-Vc—bc? (5 and the constantd,, , are determined by the initial density

distribution c(r,8,t=0). The eigenvalues of the Hermitian

. . L problem are
With no convection and homogeneous, positivehis equa-

tion supports Fisher front propagation with velocity/Ra. Inmio ?
The experimental situation correspondsDe-10"° cn?/s | R e,
and a~10 /s, so the Fisher velocity is of order 0:1

pum/s, as has been observed experimentally. The Fish mo .

width, which is the characteristic scale of spatial correlations?’&herejn’f”’o is the mth zero of the corresponding Bessel

is \D/a~10"2 cm, much smaller than the petri-dish radius 'Unction- _ _ _
of a few centimeters. Let us get an order of magnitude estimate for the time

In cylindrical geometry, Eq(5) takes the form scales that are relevant to the experini@it The character-
istic times needed for the “ground state” to control the sys-
ac(r,6,t) tem are given by the typical difference between two eigen-
$ =DVZc(r,8,t)+a(6)c(r,6,t)+v-Vc—bc?, values. In our case, since the first zeroes of the Bessel
functions are of order 1, the times involved argR?/D).
®  For an experimental system wifR~0.01 m andD~ 10 *°
m?/s, the typical relaxation times a®(10° s)~11 days,
which is larger than the typical time of the actual experiment.
Consider now the non-Hermitian case, whereg 0. Un-

(14

ot

and for a rotating petri-dish the convection ternj 12|

Jc

v-Ve=w—. 7) like its Cartesian analogouys,9], there is no simple gauge
a6 which relates the “tilted” and the “untilted” wave func-
tions, as the separation of variables is impossible. Spanning
Pie geometry is defined by the space of normalizable functions by a set of Hermitian
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eigenstates, the perturbative tewd, mixes both quantum On the other hand, the truncation of the infinite matrix may
numbersm and n. The matrix elements of the convection be justified only if the elements are arranged by order of their
term are “energies,” I', ,,, and the matrix is truncated if this energy
is much larger than the ground state, () eigenvalue. As
(n,m|wdgk,1)=20R?ynm, (15)  the eigenvalues of the unperturbed problem are related to the
zeroes of the corresponding Bessel functions, it is impossible
where y,my is to satisfy these two conditions at small wedge angles, since
as 6,—0, the highem zeroes of any Bessel of ordarare
k+n=even O smaller than than=1 zero of then+ 1 state, and the con-
dition (18) implies the diagonalization of an infinite matrix.
Ynmkl= k+n=odd 2kn (16) Accordingly, I present here the numerical results for the case
n2_ 2 Tn.m7knmkl o= . This situation does not coincide with the experimen-
tal conditions in[4], but there seems to be no prevention to
and perform the same experiment with a large shielded area.
In Fig. 2, contour plots of the ground state for different
1 angular velocities are shown. One may identify clearly the
Inmk,=f Jnmw,go(y)j[(w,go(y)y dy. (17) large deviations from the ground state from its shape at
0 =0. The largest 100 spectral points for each case are shown
in Fig. 3.
In .order to calculat_e the eigenvalugs and _eigenfunctions at Figure 4 presents the ground state eigenvaiyein units
finite angular velocity one should diagonalize the full non-of p/R2, as a function of the angular velocity of the dish.
Hermitian Liouville operator. The extinction transition takes The extinction transition takes place when this eigenvalue is
place as the ground statemallest eigenvalue,I'; ;, be-  |arger than the growth rate on the “pied/D/R?, as has
comes larger than the growth rate,on the pie. been found earlier.
ied numerically using some computer diagonalization of the(l) and (2) on a rotating petri-dish. In order to do that, the

the ground state of this operator, since this state dominatgfe poundary conditions are

the system close to the extinction transition.

The ljumerical _analysi;, ho.wever, may lead to erroneous c(r,6o,t)=c(r,04)=0,
results if the continuum limit is not taken carefully. In the
most general case, a discretized version of a model with local
growth rate and hopping between sites may be represented ¢(Ry,60,t)=c(Rz,01)=0,
numerically as a matrix, where the growth rates are the co-
efficients on the diagonal and the hopping process gives thaith AR=R,—R;. In the limit R;— at constantn, the
off-diagonal terms. As any hopping term is positive asymptotic expansion of the Bessel functiahsand Y, at
semidefinite, the only negative terms are the local growtHarge argument gives the eigenfunctions of the unperturbed
rate, and for any finite matrix, by adding an appropriate mul-Liouville operator,
tiplication of the unit matrix, one may get a positive

(19

semidefinite matrix with thesame eigenvectors. Perron- (Chm/D)Y* [ marr _[nmé

Frobenius theoremi14] then implies that the ground state Gmn(r.0)~ SN AR T an /SN —p— s
L > ARVR; 6, 0

should be a nodeless, positive eigenvector. There is a simple (20)

physical interpretation to this result: since the ground state
dominates the system at long times, and the number of bac-h the bh the bound dit A
teria should not become negative, the Perron-Frobenius thedere the phase, ensur_es e2 2”” ar%/ con !'OnSR’i
rem should hold. Numerical diagonalization of the evqutionand the e|genvalu_esF,n,m—D[m ™/ (AR)7], aremdepen—
operator, on the other hand, may give a ground state Witﬁentof n. The matrix elements of the operatv, are given
nodes, which is physically impossible. b
In order to solve this problem the discrete limit of the
continuum theory should be taken carefully. Wheis dis- (n,mwdglk,1)= w8 Yok, (21)
cretized in quanta oA @, the azimuthal hopping rate be-
comesD/(r?A 6%) and the drift is+ w/A 6. In order to avoid ~ with
the (physically impossible negative hopping rates, one

should keepA # small, thus restricting the minimal value of k+n=even 0
the quantum numbaen. If the effective discretization is given
by A 6= 6y/n, the matrix(16) may be truncated only for kT ) k4 n=odd 2kn (22
n2_ k2 !
- szao 18
n= D - (18) where the approximation
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FIG. 2. Contour plot of the bacterial density &= . Upper FIG. 3. First 100 spectral poinf$m[I'/D/R?] vs R¢I'/D/R?]}
panel, o/D/R?>=0; middle, »/D/R?=10; and lower panel, at #,=m. Upper panel,w/D/R?=0; middle o/D/R?>=10; and
»/DIR?=30. lower panel,o/D/R?=30.
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FIG. 4. Highest eigenvalud],/D/R?, as a function of the an- FIG. 5. Narrow shell geometry, where the two-dimensional

gular velocity,w/D/R?, for 6,= . The extinction happens as this Problem converges to the “integrable” case.
eigenvalue is larger thaa/D/R?, the growth rate inside the pie.

ij [ mar N
sin| —-
R, | AR 9P

Ro marr
~ in ——=+
leRlsm( AR a,

In conclusion, the mathematical problem which corre-
| 71 sponds to the experimefd] has been found to be noninte-
sin(ﬁ + ak) Jrdr grable, and no simple gauge transformation connects the eig-
envectors of the static and the dynamic problems. The actual
critical velocity and ground state properties have to be stud-
dr ied numerically, and the limit of very narrow wedge angle
(0p,—0) involves diverging numerical loads. The time scales
(23 needed for the ground state to dominate the system are larger

_ than the duration of the actual experiment, and this explains
for AR/R;<1 has been used. Accordingly, for amysector,  the observed inequilibration.

both the diagonal and the off-diagonal matrix elements are
identical with the corresponding one dimensional problem, | wish to thank A. Kudrolli, D. R. Nelson, and K. Dahmen

Al
Sin ﬁ-l—ak

and the results should be the same. for helpful discussions and comments.
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