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Extinction of a bacterial colony under forced convection in pie geometry

Nadav M. Shnerb
Department of Physics, Judea and Samaria College, Ariel 44837, Israel

~Received 4 July 2000; published 21 December 2000!

The extinction of a bacterial colony, as it is forced to migrate into a hostile environment, is analyzed in pie
geometry. Under convection, separation of the radial and the azimuthal degrees of freedom is not possible, so
the linearized evolution operator is diagonalized numerically. Some characteristic scales are compared with the
results of recent experiments, and the ‘‘integrable’’ limit of the theory in the narrow growth region is studied.
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The time evolution of bacterial colonies on a petri-di
has been studied recently both theoretically and experim
tally @1–4#. The colony is a relatively simple biological sys
tem, and its basic component, an individual bacterium,
volves only ‘‘elementary’’ biological processes such
diffusion, food consumption, multiplication, death, and so
interaction like chemotaxis. Studies of several bacte
strains have shown a wide variety of complex pattern form
tion, in most cases due to either competition for food
sources or chemical interaction. With a uniform, inexhau
ible background of nutrients and without the presence
mutations and chemical signaling, these simple strains
suppose to invade an empty region as a front which pro
gates with some typical velocity, known as the Fisher fro
@5–7#.

Biological problems of colony growth ininhomogeneous
environment and under forced convection have been m
eled recently by Nelson and Shnerb@8# and by Dahmen,
Nelson, and Shnerb@9#. These studies have focused on t
spectral properties of the linearized evolution opera
which becomes non-Hermitian in the presence of convec
@10#. An experiment designed to test these predictions
been carried out recently by Neicuet al. @4#.

In the experiment, a colony ofBacillus subtilisbacteria is
forced to migrate in order to ‘‘catch up’’ with a shielde
region on the petri-dish, where all the other parts of the d
are exposed to an ultraviolet~uv! light, which makes the
unshielded bacteria immotile. It was assumed that the ad
tation of the bacterial colony to the rotating shielded reg
has nothing to do with information processing or mutual s
naling in the colony, but is attributed solely to the combin
effect of ‘‘dumb’’ diffusion of individual bacteria and the
larger growth rate under the shelter. Theoretically, it w
predicted that the adaptation of the colony to the mov
environment fails if the drift is faster than the Fisher fro
velocity, as the colony lags behind the shelter and an ext
tion transition takes place.

In order to get the flavor of the theory, let us conside
one-dimensional example, where bacteria are diffusing o
line parametrized byx, and are subject to some environme
tal heterogeneity that implies fluctuating growth rate. If t
bacteria diffuses, multiply, and are forced to migrate w
some convection velocityv, the differential equation which
describes the evolution of the colony is

]c

]t
5D

]2c

]x2
1v

]c

]x
1a~x!c2bc2, ~1!
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wherea(x) is the local growth rate. When the hostile env
ronment outside an ‘‘oasis’’ of sizex0 causes the immediat
death of any bacteria, and inside the oasis there is s
positive growth rate,a(x) takes the form

a~x!5H a 0<x<x0

2` elsewhere.
~2!

In the absence of a drift, i.e.,v50, the linearized version
of this problem is equivalent to the~imaginary time! evolu-
tion of a quantum particle in an infinite potential well. Th
growth pattern is determined by the eigenvalues of the e
lution operator, giving a colony localized on the oasis if
has a minimal widthx0.pAD/a. ~This width scales like the
width of the Fisher front!. The introduction of the drift term
v]x into Eq. ~1! may be compensated by a ‘‘gauge’’ of th
evolution ~Liouville! operator eigenfunctions

fn5sin~npx/x0!→e6vx/2D sin~npx/x0! ~3!

together with a rigid shift of the eigenvalues,

Gn~v !5Gn~v50!2
v2

4D
. ~4!

The theory, thus, predicts an extinction transition when
the eigenvalues of Eq.~4! become negative, i.e., asvc

52AaD2O(1/x0), which is the Fisher velocity@11#. Right
above the extinction transition, only the largest growth
genvalue~the ‘‘ground state’’! is positive, and the nonlinea
term 2bc2 is suppressed. Accordingly, the analysis of t
transition is focused on the features of the ground state of
linearized operator.

The experiment@4# takes place in a two-dimensional ge
ometry. Part of a petri-dish was shielded from the uv sour
and then this shield was given a constantangular velocity
with respect to the petri-dish. The corresponding convect
velocity v(r )5vr was chosen to interpolate between ze
~at the rotation axis! and about 2vc at the edge of the dish. I
turned out that the colony indeed fails to keep rotating w
the shield at about half the radius. On the other hand,
velocity profile for the bacterial densityc(r ,v) did not reach
equilibrium during the experiment~;3 days!.

In this paper, I consider the differences between the o
dimensional system~1,2! and the actual experimental setu
In particular, the two-dimensional nature of the experime
©2000 The American Physical Society06-1
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and the effect ofradial diffusion are considered explicitly
The typical time scales for the stabilization of the grou
state are then compared with the experiment.

In order to capture the essential physics using the simp
geometry, the extinction transition is considered on a pie
section of the two-dimensional disc~see Fig. 1!. Although
the shielded region of the experiment@4# was not pie shaped
it turns out that even in this simple geometry there is a c
pling between the radial and the azimuthal degrees of f
dom, and the spectrum becomes ‘‘chaotic’’ when convect
takes place. Accordingly, the results presented here are
relevant to the more complicated geometry of the exp
ment.

The basic equation which governs the bacterial grow
problem on a nonuniform substrate, in the absence of m
tion and chemical interactions, is@8#

]c~x,t!

]t
5D¹2c~x,t!1a~x!c~x,t!1v•“c2bc2. ~5!

With no convection and homogeneous, positivea this equa-
tion supports Fisher front propagation with velocity 2ADa.
The experimental situation corresponds toD;1026 cm2/s
and a;1023/s, so the Fisher velocity is of order 0.121
mm/s, as has been observed experimentally. The Fi
width, which is the characteristic scale of spatial correlatio
is AD/a;1022 cm, much smaller than the petri-dish radi
of a few centimeters.

In cylindrical geometry, Eq.~5! takes the form

]c~r ,u,t !

]t
5D¹2c~r ,u,t !1a~u!c~r ,u,t !1v•“c2bc2,

~6!

and for a rotating petri-dish the convection term is@12#

v•“c5v
]c

]u
. ~7!

Pie geometry is defined by

FIG. 1. Pie geometry: the growth rate in the shaded region ia,
and any bacteria outside this area ‘‘die’’~or become immotile! in-
stantly due to the UV light. The shaded region is then rotated
angular velocityv.
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a~u!5H a 0<u<u0

2` elsewhere,
~8!

i.e., we have absorbing boundary conditions@13#

c~r ,u0 ,t !5c~r ,0,t !50. ~9!

As for the petri-dish edge atr 5R, it is reasonable to take th
von Neumann boundary and to impose the no-slip condit
on the bacterial density at the surface. However, the dat
@4# seems to indicate extinction of the bacteria at the edg
the dish. This is perhaps due to the fact that the width of
boundary layer~which is expected due to the no-slip cond
tion! is approximately the Fisher width, which has be
shown above to be very small. Accordingly, we further si
plify the problem by using

c~R,u,t !50. ~10!

Dropping the term2bc2 at Eq. ~5!, one has the linearized
evolution operator, and for the no-drift (v50) case, the den-
sity of bacteria at timet is given by

c~r ,u,t !5(
m,n

Am,ne(a2Gm,n)tfm,n~r ,u!, ~11!

with the eigenstates of the evolution operator,

fm,n~r ,u!5hm,nJnp/u0
~r /AD/Gm,n!sinS npu

u0
D , ~12!

hm,n , the normalization factors,

hn,m5
2

RAu0

1

J[(np/u0)11]~R/AD/Gm,n!
, ~13!

and the constantsAm,n are determined by the initial densit
distribution c(r ,u,t50). The eigenvalues of the Hermitia
problem are

Gm,n5DS j np/u0

m

R
D 2

, ~14!

where j np/u0

m is the mth zero of the corresponding Bess

function.
Let us get an order of magnitude estimate for the ti

scales that are relevant to the experiment@4#. The character-
istic times needed for the ‘‘ground state’’ to control the sy
tem are given by the typical difference between two eig
values. In our case, since the first zeroes of the Be
functions are of order 1, the times involved are;(R2/D).
For an experimental system withR;0.01 m andD;10210

m2/s, the typical relaxation times areO(106 s);11 days,
which is larger than the typical time of the actual experime

Consider now the non-Hermitian case, wherevÞ0. Un-
like its Cartesian analogous@8,9#, there is no simple gauge
which relates the ‘‘tilted’’ and the ‘‘untilted’’ wave func-
tions, as the separation of variables is impossible. Span
the space of normalizable functions by a set of Hermit

t
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eigenstates, the perturbative termv]u mixes both quantum
numbersm and n. The matrix elements of the convectio
term are

^n,muv]uuk,l &52vR2gnmkl , ~15!

wheregnmkl is

gnmkl5H k1n5even 0

k1n5odd
2kn

n22k2
hn,mhk,l I nmkl

~16!

and

I nmkl5E
0

1

Jnp/u0

m ~y! j kp/u0

l ~y!y dy. ~17!

In order to calculate the eigenvalues and eigenfunction
finite angular velocity one should diagonalize the full no
Hermitian Liouville operator. The extinction transition tak
place as the ground state~smallest! eigenvalue,G1,1, be-
comes larger than the growth rate,a, on the pie.

As the rotating system is not integrable, it should be st
ied numerically using some computer diagonalization of
linearized evolution operator. Essentially, one should look
the ground state of this operator, since this state domin
the system close to the extinction transition.

The numerical analysis, however, may lead to errone
results if the continuum limit is not taken carefully. In th
most general case, a discretized version of a model with lo
growth rate and hopping between sites may be represe
numerically as a matrix, where the growth rates are the
efficients on the diagonal and the hopping process gives
off-diagonal terms. As any hopping term is positiv
semidefinite, the only negative terms are the local grow
rate, and for any finite matrix, by adding an appropriate m
tiplication of the unit matrix, one may get a positiv
semidefinite matrix with thesame eigenvectors. Perron
Frobenius theorem@14# then implies that the ground sta
should be a nodeless, positive eigenvector. There is a sim
physical interpretation to this result: since the ground s
dominates the system at long times, and the number of
teria should not become negative, the Perron-Frobenius t
rem should hold. Numerical diagonalization of the evoluti
operator, on the other hand, may give a ground state w
nodes, which is physically impossible.

In order to solve this problem the discrete limit of th
continuum theory should be taken carefully. Whenu is dis-
cretized in quanta ofDu, the azimuthal hopping rate be
comesD/(r 2Du2) and the drift is6v/Du. In order to avoid
the ~physically impossible! negative hopping rates, on
should keepDu small, thus restricting the minimal value o
the quantum numbern. If the effective discretization is given
by Du5u0 /n, the matrix~16! may be truncated only for

n>
vR2u0

D
. ~18!
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On the other hand, the truncation of the infinite matrix m
be justified only if the elements are arranged by order of th
‘‘energies,’’ Gn,m , and the matrix is truncated if this energ
is much larger than the ground state (G1,1) eigenvalue. As
the eigenvalues of the unperturbed problem are related to
zeroes of the corresponding Bessel functions, it is imposs
to satisfy these two conditions at small wedge angles, si
asu0→0, the higherm zeroes of any Bessel of ordern are
smaller than them51 zero of then11 state, and the con
dition ~18! implies the diagonalization of an infinite matrix
Accordingly, I present here the numerical results for the c
u05p. This situation does not coincide with the experime
tal conditions in@4#, but there seems to be no prevention
perform the same experiment with a large shielded area

In Fig. 2, contour plots of the ground state for differe
angular velocities are shown. One may identify clearly t
large deviations from the ground state from its shape av
50. The largest 100 spectral points for each case are sh
in Fig. 3.

Figure 4 presents the ground state eigenvalue,G0, in units
of D/R2, as a function of the angular velocity of the dis
The extinction transition takes place when this eigenvalu
larger than the growth rate on the ‘‘pie,’’a/D/R2, as has
been found earlier.

Let us show now how to get a problem equivalent to E
~1! and ~2! on a rotating petri-dish. In order to do that, th
geometry should be taken on a narrow shell as in Fig. 5,
the boundary conditions are

c~r ,u0 ,t !5c~r ,0,t !50,
~19!

c~R1 ,u0 ,t !5c~R2,0,t !50,

with DR5R22R1. In the limit R1→` at constantn, the
asymptotic expansion of the Bessel functionsJn and Yn at
large argument gives the eigenfunctions of the unpertur
Liouville operator,

fm,n~r ,u!'
~Gn,m /D !1/4

DRAR1u0

sinS mpr

DR
1anD sinS npu

u0
D ,

~20!

where the phasean ensures the boundary conditions atR1
and the eigenvalues,Gn,m5D@m2p2/(DR)2#, are indepen-
dentof n. The matrix elements of the operatorv]u are given
by

^n,muv]uuk,l &5vdm,lgnk , ~21!

with

gnk5H k1n5even 0

k1n5odd
2kn

n22k2
,

~22!

where the approximation
6-3
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FIG. 2. Contour plot of the bacterial density atu05p. Upper
panel, v/D/R250; middle, v/D/R2510; and lower panel,
v/D/R2530.
01190
FIG. 3. First 100 spectral points$Im@G/D/R2# vs Re@G/D/R2#%
at u05p. Upper panel,v/D/R250; middle v/D/R2510; and
lower panel,v/D/R2530.
6-4
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E
R1

R2
sinS mpr

DR
1anD sinS lpr

DR
1akDArdr

;AR1E
R1

R2
sinS mpr

DR
1anD sinS lpr

DR
1akDdr

~23!

for DR/R1!1 has been used. Accordingly, for anym sector,
both the diagonal and the off-diagonal matrix elements
identical with the corresponding one dimensional proble
and the results should be the same.

FIG. 4. Highest eigenvalue,G0 /D/R2, as a function of the an-
gular velocity,v/D/R2, for u05p. The extinction happens as th
eigenvalue is larger thana/D/R2, the growth rate inside the pie.
s.

w
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In conclusion, the mathematical problem which corr
sponds to the experiment@4# has been found to be noninte
grable, and no simple gauge transformation connects the
envectors of the static and the dynamic problems. The ac
critical velocity and ground state properties have to be st
ied numerically, and the limit of very narrow wedge ang
(u0→0) involves diverging numerical loads. The time sca
needed for the ground state to dominate the system are la
than the duration of the actual experiment, and this expla
the observed inequilibration.

I wish to thank A. Kudrolli, D. R. Nelson, and K. Dahme
for helpful discussions and comments.

FIG. 5. Narrow shell geometry, where the two-dimension
problem converges to the ‘‘integrable’’ case.
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